case.sif
Header
CHECK KEYWORDS Warn
Mesh DB "." "."
Include Path ""
Results Directory ""
End
Simulation
Max Output Level = 5
Coordinate System = Cartesian
Coordinate Mapping(3) = 1 2 3
Simulation Type = Transient
Steady State Max Iterations = 1
Output Intervals = 1
Timestepping Method = BDF
BDF Order = 1
Timestep intervals = 10
Timestep Sizes = 10
Solver Input File = case.sif
Post File = case.ep
End
Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
Permittivity of Vacuum = 8.8542e-12
Boltzmann Constant = 1.3807e-23
Unit Charge = 1.602e-19
End
Body 1
Target Bodies(1) = 1
Name = "Body 1"
Equation = 1
Material = 1
Body Force = 1
Initial condition = 1
End
Solver 2
Equation = Heat Equation
Procedure = "HeatSolve" "HeatSolver"
Variable = Temperature
Exec Solver = Always
Stabilize = True
Bubbles = False
Lumped Mass Matrix = False
Optimize Bandwidth = True
Steady State Convergence Tolerance = 1.0e-5
Nonlinear System Convergence Tolerance = 1.0e-7
Nonlinear System Max Iterations = 20
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-3
Nonlinear System Relaxation Factor = 1
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0e-10
BiCGstabl polynomial degree = 2
Linear System Preconditioning = Diagonal
Linear System ILUT Tolerance = 1.0e-3
Linear System Abort Not Converged = False
Linear System Residual Output = 1
Linear System Precondition Recompute = 1
End
Solver 1
Equation = Navier-Stokes
Procedure = "FlowSolve" "FlowSolver"
Variable = Flow Solution[Velocity:3 Pressure:1]
Exec Solver = Always
Stabilize = True
Bubbles = False
Lumped Mass Matrix = False
Optimize Bandwidth = True
Steady State Convergence Tolerance = 1.0e-5
Nonlinear System Convergence Tolerance = 1.0e-7
Nonlinear System Max Iterations = 20
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-3
Nonlinear System Relaxation Factor = 1
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0e-10
BiCGstabl polynomial degree = 2
Linear System Preconditioning = Diagonal
Linear System ILUT Tolerance = 1.0e-3
Linear System Abort Not Converged = False
Linear System Residual Output = 1
Linear System Precondition Recompute = 1
End
Equation 1
Name = "Equation 1"
Convection = Computed
Active Solvers(2) = 2 1
End
Material 1
Name = "Water (room temperature)"
Heat Conductivity = 0.58
Heat Capacity = 4183.0
Density = 998.3
Relative Permittivity = 80.1
Compressibility Model = Incompressible
Viscosity = 1.002e-3
Sound speed = 1497.0
Heat expansion Coefficient = 0.207e-3
End
Body Force 1
Name = "BodyForce 1"
Boussinesq = True
End
Initial Condition 1
Name = "InitialCondition 1"
Velocity 1 = 0.0001
Temperature = 293
End
Boundary Condition 1
Target Boundaries(1) = 6
Name = "bottom"
Velocity 3 = 0
Velocity 1 = 0
Velocity 2 = 0
Temperature = 300
End
Boundary Condition 2
Target Boundaries(1) = 1
Name = "top"
Velocity 3 = 0
Velocity 1 = 0
Velocity 2 = 0
Temperature = 293
End
Boundary Condition 3
Target Boundaries(1) = 7
Name = "submarine"
Noslip wall BC = True
Temperature = 300
End
Solver 3
Exec Solver = after timestep
Equation = "result output"
Procedure = "ResultOutputSolve" "ResultOutputSolver"
Output File Name = "case"
Output Format = String "vtu"
Binary Output = True
Single Precision = True
Save Geometry Ids = True
End
레일리-버나드 대류( Rayleigh-Benard Convection) 모사에 대한
2D 예제가 있는데, 그걸 응용해서 3D 모델에 적용해 보았다.
레일리-버나드 대류가 뭔가 싶어서 조사해 봤더니,
바닥은 뜨겁고 윗쪽이 차가운 평행한 양쪽 경계조건에서의 대류 현상을 말한다고 한다.
이때 부력조건과 난류조건을 잘 주면(레이놀즈계수 Ra),
동그랗게 돌돌 말아서 돌아가는 셀 같은 것들이 여러 개 나타난다고 한다.
레일리-버나드 대류가 뭔가 싶어서 조사해 봤더니,
바닥은 뜨겁고 윗쪽이 차가운 평행한 양쪽 경계조건에서의 대류 현상을 말한다고 한다.
이때 부력조건과 난류조건을 잘 주면(레이놀즈계수 Ra),
동그랗게 돌돌 말아서 돌아가는 셀 같은 것들이 여러 개 나타난다고 한다.
아직 이론을 충분히 숙지하지 못한 상태라서,
난류 모델은 적용하지 못하였다.
Unify Surface 메뉴를 사용해서
여러개의 Surface를 하나로 합쳐버리면
Boundary Condition을 줄 때 편하다.
Paraview를 이용한 모습.
댓글 없음:
댓글 쓰기